# Organoimido complexes of tungsten-(vi) and -(v): correlation between relative orientation of $\pi$-donor ligands and electron configuration of the metal $\ddagger$ 

L ars Wesemann, ${ }^{*} \dagger$ L udger W aldmann, U we R uschewitz, Beate $G$ anter and Trixie W agner

Institut für A norganische C hemie, Technische H ochschule A achen, D-52056 A achen, Germany


#### Abstract

The high-yield synthesis of the monomeric five-co-ordinate arylimido complex $\left[\mathrm{WCl}_{3}(\mathrm{NPh})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}{ }_{2}-2,6\right)\right]$ was achieved starting from $\left[\left\{\mathrm{WCl}_{3}(\mathrm{NPh})\right\}_{2}(\mu-\mathrm{Cl})_{2}\right]$. The adducts $\left[\mathrm{WCl}_{3}\left(\mathrm{NPh}^{2}\right)\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pri}_{2}-2,6\right) \mathrm{L}\right](\mathrm{L}=$ tetrahydrofuran, pyridine (py) or 4-tert-butylpyridine) of the monoalkoxide have been synthesized and the constitution of the pyridine adduct determined by X-ray crystallography. The reduction of the monoalkoxide with 1 equivalent of sodium amalgam in the presence of pyridine or triethylphosphine leads to the paramagnetic adducts $\left[\mathrm{WCl}_{2}(\mathrm{NPh})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}^{\mathrm{i}}-2,6\right) \mathrm{L}_{2}\right]\left(\mathrm{L}=\right.$ py or $\left.\mathrm{PEt}_{3}\right)$ which were characterized. A trans configuration was found for the two chlorine atoms and the two $\sigma$-donor ligands in the structure analysis. Reorganization of the two $\pi$-donor ligands (aryloxide and $N P h$ ) from a cis arrangement in the complex with $d^{0}$ electron configuration to a trans arrangement in the $\mathrm{d}^{1}$ configurated complexes is found and verified by X -ray diffraction analyses.


The correlation between the relative orientation of two $\pi$-donor ligands in octahedrally co-ordinated complexes and the electron configuration of the metal centre is well established by several theoretical and preparative studies. ${ }^{1-4} \mathrm{M}$ ingos ${ }^{1}$ had discussed in 1979 the cis preference of the $\mathrm{M}_{2}$ moiety in $\mathrm{d}^{0} \mathrm{~L}_{4} \mathrm{M} \mathrm{O}_{2}$ octahedra and the trans preference in $\mathrm{d}^{2} \mathrm{~L}_{4} \mathrm{M} \mathrm{O}_{2}$ octahedra using the $\left[\mathrm{M} \mathrm{OO}_{2}\left(\mathrm{PH}_{3}\right)_{4}\right]^{\mathrm{n+}}(\mathrm{n}=2$ or 0$)$ system on the basis of extendedHückel molecular orbital calculations. Similar arguments hold for the alkylimide ligand which is isoelectronic to the oxide ligand and acts as a $4 \mathrm{e} \pi$ donor exhibiting a $\mathrm{M}-\mathrm{N}-\mathrm{C}$ angle of ca. $180^{\circ}$. Several examples for the cis-M (NR) $)_{2}$ preference in $\mathrm{d}^{0}$ complexes are known. ${ }^{3,5-8}$ In 1989 Wigley and co-workers ${ }^{3}$ presented an example of the confirmation of this phenomenon in a tantalum(v) phenylimidoaryloxide. That work clearly shows the cis orientation of the aryloxide and phenylimide ligands in the $d^{0}$ complex $\left[\mathrm{TaCl}_{2}(\mathrm{NR})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}{ }_{2}-2,6\right)(\mathrm{py})_{2}\right]$ ( $\mathrm{R}=2,6-\mathrm{Pr}_{2}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{py}=$ pyridine) and the trans stereochemistry in the reduced $d^{2}$ complex $\left[\mathrm{Ta}(\mathrm{NR})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pri}_{2}-2,6\right)(\mathrm{EtC} \equiv \mathrm{CEt})\right.$ $(p y)_{2}$ ]. The cis configuration of two $\pi$ donors in complexes with $d^{0}$ electron configuration allows all three metal $d_{\pi}$ orbitals to accept $\pi$ donation from the $\pi$-donor ligands. In complexes with $d^{1}$ and $d^{2}$ electron configuration the $\pi$-donor ligands prefer the trans configuration because the electrons can reside in the lone $d_{\pi}$ orbital which is not destabilized by the $\pi$ donation.
We are interested in the synthesis and reduction of tungsten(vi) phenylimidoaryloxides which are known to react together with $\mathrm{SnR}_{3} \mathrm{H}$ as catalysts for ring-opening metathesis polymerization of cyclic alkenes. ${ }^{9}$ The organoimide ligand, which has become very popular in the last years, provides electronic flexibility and steric control. The structures of organoimido complexes in the solid state and solution have been studied very extensively. ${ }^{8} \mathrm{M}$ ono- as well as di-meric complexes are known. ${ }^{8,10}$ In comparison to the many organoimido complexes of tungsten(vi), there are few of tungsten(v). N early all the latter are of the general composition $\left[\mathrm{WCl}_{3}(\mathrm{NR}) \mathrm{L}_{2}\right]$, with L being a $\sigma$-donor ligand. ${ }^{11-13}$
In this work another example of the dependence of the relative orientation of two $\pi$-donor ligands on the electronic configuration is presented. The synthesis of three tungsten(vi) complexes, $\left[\mathrm{WCl}_{3}(\mathrm{~N} \mathrm{Ph})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}{ }^{2}-2,6\right) \mathrm{L}\right][\mathrm{L}=$ tetrahydrofuran (thf), py or 4-tert-butylpyridine (bpy)], and two tungsten(v)

[^0]complexes, $\left[\mathrm{WCl}_{2}(\mathrm{NPh})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}{ }_{2}-2,6\right) \mathrm{L}_{2}\right]\left(\mathrm{L}=\mathrm{py}\right.$ or $\left.\mathrm{PEt}_{3}\right)$, is described. The solid-state structure of the $d^{0}$ complex $\left[\mathrm{WCl}_{3}\right.$ $\left.(\mathrm{N} \mathrm{Ph})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}-2,6\right)(\mathrm{py})\right]$ and of the $\mathrm{d}^{1}$ complex $\left[\mathrm{WCl}_{2}(\mathrm{NPh})\right.$ $\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}^{\mathrm{i}}-2,6\right)(\mathrm{py})_{2}$ ] are also discussed.

## Results and D iscussion

## Syntheses

The tungsten(vi) phenoxide $\left[\mathrm{WCl}_{3}(\mathrm{~N} \mathrm{Ph})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pri}_{2}-2,6\right)\right] \mathbf{2}$ can be prepared straightforwardly in $85 \%$ yield starting from $\left[\left\{\mathrm{WCl}_{3}(\mathrm{~N} \mathrm{Ph})\right\}_{2}(\mu-\mathrm{Cl})_{2}\right]$, which is converted quantitatively into [W $\left.(\mathrm{N} \mathrm{Ph})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}-2,6\right)_{4}\right] \mathbf{1}$ in hexane using a mixture of 2,6 diisopropylphenol and diethylamine (Scheme 1).§r, ${ }^{14}$ The diethylamine hydrochloride was filtered off and the solvent was changed to toluene. Owing to the high solubility of the tetraaryloxide even in hexane, crystallization at $-30^{\circ} \mathrm{C}$ affords crystals of 1 in only $28 \%$ yield. Therefore we developed a method to use the crude reaction product, which is pure on the basis of ${ }^{1} \mathrm{H}$ NM R spectroscopy. The crude toluene solution of the tetraaryloxide 1 was treated with 1.5 equivalents of $\left[\left\{\mathrm{WCl}_{3}(\mathrm{NPh})\right\}_{2}(\mu-\mathrm{Cl})_{2}\right]$ resulting in a redistribution to give the monoaryloxide $\left[\mathrm{WCl}_{3}(\mathrm{NPh})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}{ }_{2}-2,6\right)\right]$ 2. Redistribution reactions have previously been shown to be a versatile method for the syntheses of phenylimidoaryloxides. ${ }^{15}$
The monomeric five-co-ordinate compound 2 reacts with $\sigma$ donors like thf, pyridine or 4-tert-butylpyridine to form the six-co-ordinate complexes $\left[\mathrm{WCl}_{3}(\mathrm{NPh})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}{ }_{2}-2,6\right) \mathrm{L}\right]$ ( $\mathrm{L}=$ thf 3, py $\mathbf{4}$ or bpy $\mathbf{5}$ ) (Scheme 2). ${ }^{16}$ The monoaryloxide $\mathbf{2}$ is readily reduced by 1 equivalent of sodium amalgam in the presence of 2 equivalents of the desired $\sigma$-donor ligand ( $\mathrm{L}=\mathrm{py}$ or $\mathrm{PEt}_{3}$ ) using toluene-tetrahydrofuran (3:1) as solvent. The pyridine


Scheme $1 \quad \mathrm{R}=2,6-\mathrm{Pr}_{2}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}$. (i) $8 \mathrm{ROH}, 8 \mathrm{NEt} \mathrm{H}_{2}$; (ii) $3\left[\left\{\mathrm{WCl}_{3}(\mathrm{NPh})\right\}_{2}-\right.$ $\left.(\mu-\mathrm{Cl})_{2}\right]$

[^1]

6,7
Scheme $2 \mathrm{R}=2,6-\mathrm{Pr}_{2}^{\mathrm{i}}-\mathrm{C}_{6} \mathrm{H}_{3}$. (i) $\mathrm{L}=$ thf, py or bpy; (ii) $\mathrm{Na}-\mathrm{Hg}, 2 \mathrm{~L}^{\prime}$ ( $\mathrm{L}^{\prime}=$ py or $\mathrm{PEt}_{3}$ ); (iii) $\mathrm{Na}-\mathrm{Hg}, \mathrm{L}=\mathrm{L}^{\prime}=$ py


Fig. 1 A SCHAKAL plot of $\left[\mathrm{WCl}_{3}(\mathrm{NPh})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}{ }_{2}-2,6\right)(\mathrm{py})\right] 4$
adduct $\left[\mathrm{WCl}_{2}\left(\mathrm{NPh}^{2}\right)\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pri}_{2}-2,6\right)(\mathrm{py})_{2}\right] 6$ was obtained as dark green crystals in $77 \%$ yield and the triethylphosphine adduct $\left[\mathrm{WCl}_{2}\left(\mathrm{~N} \mathrm{Ph}^{2}\right)\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}{ }_{2}-2,6\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]$ as red crystals in $62 \%$ yield. The reduction of $\left[\mathrm{WCl}_{3}(\mathrm{NPh})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pri}_{2}-2,6\right)(\mathrm{py})\right] 4$ with 1 equivalent of sodium amalgam in the presence of pyridine also leads to the paramagnetic pyridine adduct 6.

## C rystal structures

Brown single crystals of $\left[\mathrm{WCl}_{3}(\mathrm{NPh})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}^{\mathrm{i}}-2,6\right)(\mathrm{py})\right] 4$ suitable for structure analysis were grown from benzene-hexane-diethyl ether ( $1: 2: 2$ ) at $-6{ }^{\circ} \mathrm{C}$. Compound 4 crystallizes in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{c}$ with two independent molecules (named A and B). Both have a disordered group: in molecule $A$ the $\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}$ ) and in B the N Ph group have two alternative positions. A SCHAK AL ${ }^{17}$ plot of A is shown in Fig. 1; the disordered moiety was omitted for clarity. Selected bond lengths and angles are compiled in Tables 1 and 2. Obviously the disorder of the two groups is correlated, otherwise short intermolecular distances would occur (shortest C-C distance ca. 2.8 $\AA$ ). The disorder in molecule A shows for the important angles of the $\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}$ part [W(1a)-O(1a)-C(1a) 142(2) and W(1a)-O(1a)-C(1a*) 161(3) ${ }^{\circ}$ ] a difference of $19(5)^{\circ}$. In the other disordered group, the N Ph in molecule B, the difference is

Table 1 Selected bond lengths ( $\AA$ ) for compounds $\mathbf{4}^{*}$ and 6

| $\begin{aligned} & {\left[\mathrm { WCl } _ { 3 } ( \mathrm { NPh } ) \left(\mathrm{OC}_{6} \mathrm{H}_{3}-\right.\right.} \\ & \left.\left.\mathrm{Pr}_{2}^{\mathrm{i}}-2,6\right)(\mathrm{py})\right] 4 \end{aligned}$ |  | $\begin{aligned} & {\left[\mathrm { WCl } _ { 2 } ( \mathrm { NPh } ) \left(\mathrm{OC}_{6} \mathrm{H}_{3}\right.\right.} \\ & \left.\left.\mathrm{Pr}_{2}^{\mathrm{i}}-2,6\right)(\mathrm{py})_{2}\right] 6 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{W}(1 \mathrm{a})-\mathrm{Cl}(1 \mathrm{a})$ | 2.325(5) | W-CI(1) | 2.400(3) |
| W (1b)-Cl(1b) | 2.358(6) |  |  |
| W (1a)-Cl(2a) | 2.350(6) | W-CI(2) | 2.406(3) |
| W (1b)-Cl(2b) | 2.337(6) |  |  |
| W (1a)-Cl(3a) | 2.381(5) |  |  |
| W (1b)-Cl(3b) | 2.365(6) |  |  |
| W (1a)-O(1a) | 1.85(1) | W-0 | 1.969(8) |
| W (1b)-0 (1b) | 1.82(1) |  |  |
| W (1a)-N (1a) | 1.78(1) | W-N (1) | 1.75(1) |
| W (1b)-N (1b) | 1.70(2) |  |  |
| W (1a)-N (2a) | 2.32(2) | W-N (2) | 2.18(1) |
| W (1b)-N (2b) | 2.31(2) |  |  |
|  |  | W-N (3) | 2.18(1) |
| $N(1 a)-C(11 a)$ | 1.34(2) | $\mathrm{N}(1)-\mathrm{C}(11)$ | 1.38(1) |
| $N(1 b)-C(11 b)$ | 1.62(5) |  |  |
| N (1b)-C(11b*) | 1.24(5) |  |  |
| O(1a)-C(1a) | 1.53(5) | O-C(1) | 1.33(1) |
| O(1a)-C(1a*) | 1.26(5) |  |  |
| O(1b)-C(1b) | 1.40(2) |  |  |
| $N(2 a)-C(21 a)$ | 1.30(3) | N(2)-C(21) | 1.34(1) |
| $N(2 b)-C(21 b)$ | 1.33(3) |  |  |
|  |  | N (3)-C(31) | 1.34(2) |

* Indices $a$ and $b$ indicate the two independent molecules $A$ and $B$, an asterix the second different position of the disordered groups.

Table 2 Selected bond angles $\left({ }^{\circ}\right)$ for compounds 4 and 6

| 4 |  | 6 |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cl}(1 \mathrm{a})-\mathrm{W}(1 \mathrm{a})-\mathrm{Cl}(2 \mathrm{a})$ | 168.2(2) | $\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(2)$ | 174.1(1) |
| $\mathrm{Cl}(1 \mathrm{~b})-\mathrm{W}(1 \mathrm{~b})-\mathrm{Cl}(2 \mathrm{~b})$ | 168.2(2) |  |  |
| $\mathrm{Cl}(1 \mathrm{a})-\mathrm{W}(1 \mathrm{a})-\mathrm{Cl}(3 \mathrm{a})$ | 87.0(2) |  |  |
| $\mathrm{Cl}(1 \mathrm{~b})-\mathrm{W}(1 \mathrm{~b})-\mathrm{Cl}(3 \mathrm{~b})$ | 85.7(2) |  |  |
| $\mathrm{Cl}(2 \mathrm{a})-\mathrm{W}(1 \mathrm{a})-\mathrm{Cl}(3 \mathrm{a})$ | 87.8(2) |  |  |
| $\mathrm{Cl}(2 \mathrm{~b})-\mathrm{W}(1 \mathrm{~b})-\mathrm{Cl}(3 \mathrm{~b})$ | 87.7(2) |  |  |
| $\mathrm{Cl}(1 \mathrm{a})-\mathrm{W}(1 \mathrm{a})-\mathrm{O}(1 \mathrm{a})$ | 91.7(4) | $\mathrm{Cl}(1)-\mathrm{W}-\mathrm{O}$ | 87.6(3) |
| $\mathrm{Cl}(1 \mathrm{~b})-\mathrm{W}(1 \mathrm{~b})-\mathrm{O}(1 \mathrm{~b})$ | 89.7(4) |  |  |
| $\mathrm{Cl}(2 \mathrm{a})-\mathrm{W}(1 \mathrm{a})-\mathrm{O}(1 \mathrm{a})$ | 91.0(4) | $\mathrm{Cl}(2)-\mathrm{W}-\mathrm{O}$ | 86.5(2) |
| $\mathrm{Cl}(2 \mathrm{~b})-\mathrm{W}(1 \mathrm{~b})-\mathrm{O}(1 \mathrm{~b})$ | 93.9(3) |  |  |
| $\mathrm{Cl}(3 \mathrm{a})-\mathrm{W}(1 \mathrm{a})-\mathrm{O}(1 \mathrm{a})$ | 167.3(4) |  |  |
| $\mathrm{Cl}(3 \mathrm{~b})-\mathrm{W}(1 \mathrm{~b})-\mathrm{O}(1 \mathrm{~b})$ | 163.5(4) |  |  |
| $\mathrm{Cl}(1 \mathrm{a})-\mathrm{W}(1 \mathrm{a})-\mathrm{N}$ (1a) | 98.6(5) | $\mathrm{Cl}(1)-\mathrm{W}-\mathrm{N}(1)$ | 94.6(3) |
| $\mathrm{Cl}(1 \mathrm{~b})-\mathrm{W}(1 \mathrm{~b})-\mathrm{N}$ (1b) | 94.4(6) |  |  |
| $\mathrm{Cl}(1 \mathrm{a})-\mathrm{W}(1 \mathrm{a})-\mathrm{N}(2 \mathrm{a})$ | 85.1(4) | $\mathrm{Cl}(1)-\mathrm{W}-\mathrm{N}(2)$ | 89.7(3) |
| $\mathrm{Cl}(1 \mathrm{~b})-\mathrm{W}(1 \mathrm{~b})-\mathrm{N}(2 \mathrm{~b})$ | 84.8(4) |  |  |
| $\mathrm{Cl}(2 \mathrm{a})-\mathrm{W}(1 \mathrm{a})-\mathrm{N}(1 \mathrm{a})$ | 92.2(4) | $\mathrm{Cl}(2)-\mathrm{W}-\mathrm{N}(1)$ | 91.3(3) |
| $\mathrm{Cl}(2 \mathrm{~b})-\mathrm{W}(1 \mathrm{~b})-\mathrm{N}$ (1b) | 95.7(6) |  |  |
| $\mathrm{Cl}(2 \mathrm{a})-\mathrm{W}(1 \mathrm{a})-\mathrm{N}(2 \mathrm{a})$ | 83.8(5) | $\mathrm{Cl}(2)-\mathrm{W}-\mathrm{N}(2)$ | 90.4(3) |
| $\mathrm{Cl}(2 \mathrm{~b})-\mathrm{W}(1 \mathrm{~b})-\mathrm{N}(2 \mathrm{~b})$ | 84.6(4) |  |  |
| $\mathrm{Cl}(3 \mathrm{a})-\mathrm{W}(1 \mathrm{a})-\mathrm{N}(1 \mathrm{a})$ | 92.8(4) |  |  |
| $\mathrm{Cl}(3 \mathrm{~b})-\mathrm{W}$ (1b)-N (1b) | 94.1(7) |  |  |
| $\mathrm{Cl}(3 \mathrm{a})-\mathrm{W}(1 \mathrm{a})-\mathrm{N}(2 \mathrm{a})$ | 83.9(4) |  |  |
| $\mathrm{Cl}(3 \mathrm{~b})-\mathrm{W}(1 \mathrm{~b})-\mathrm{N}(2 \mathrm{~b})$ | 81.9(4) |  |  |
|  |  | $\mathrm{Cl}(1)-\mathrm{W}-\mathrm{N}$ (3) | 85.9(3) |
|  |  | $\mathrm{Cl}(2)-\mathrm{W}-\mathrm{N}$ (3) | 93.5(3) |
| $\mathrm{O}(1 \mathrm{a})-\mathrm{W}(1 a)-\mathrm{N}(1 \mathrm{a})$ | 99.9(5) | O-W-N (1) | 177.8(4) |
| $\mathrm{O}(1 \mathrm{~b})-\mathrm{W}(1 \mathrm{~b})-\mathrm{N}(1 \mathrm{~b})$ | 102.1(8) |  |  |
| $\mathrm{O}(1 \mathrm{a})-\mathrm{W}(1 \mathrm{a})-\mathrm{N}(2 \mathrm{a})$ | 83.4(6) | $\mathrm{O}-\mathrm{W}-\mathrm{N}(2)$ | 88.0(3) |
| $\mathrm{O}(1 \mathrm{~b})-\mathrm{W}(1 \mathrm{~b})-\mathrm{N}(2 \mathrm{~b})$ | 81.9(5) |  |  |
|  |  | O-W-N (3) | 86.6(3) |
| $N(1 a)-W(1 a)-N(2 a)$ | 174.9(6) | $\mathrm{N}(1)-\mathrm{W}-\mathrm{N}(2)$ | 91.8(4) |
| $N(1 b)-W(1 b)-N(2 b)$ | 176.0(8) |  |  |
|  |  | $N(1)-W-N(3)$ | 93.8(4) |
|  |  | $\mathrm{N}(2)-\mathrm{W}-\mathrm{N}(3)$ | 173.1(4) |
| W (1a)-O(1a)-C(1a) | 142(2) | W-O-C(1) | 168.3(7) |
| W (1a)-O(1a)-C(1a*) | 161(3) |  |  |
| W (1b)-O (1b)-C(1b) | 151(1) |  |  |
| W (1a)-O(1a)-C(11a) | 175(2) | W-N (1)-C(11) | 175.7(9) |
| W (1b)-N (1b)-C(11b) | 172(2) |  |  |
| W (1b)-N (1b)-C(11b*) | 153(3) |  |  |

19(5) ${ }^{\circ}$ too [W(1b)-N (1b)-C(11b) 172(2) and $\mathrm{W}(1 b)-N(1 b)-$ $\left.\mathrm{C}\left(11 \mathrm{~b}^{*}\right) 153(3)^{\circ}\right]$. It seems likely that the two moieties avoid each other. There is a meridional arrangement of the three


Fig. 2 A PLATON ${ }^{18}$ drawing of $\left[\mathrm{WCl}_{2}(\mathrm{NPh})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}{ }_{2}-2,6\right)(\mathrm{py})_{2}\right] 6$
chloride ligands and a cis arrangement of the phenylimide and aryloxide $\pi$-donor ligands at the tungsten centre.

G reen single crystals of $\left[\mathrm{WCl}_{2}(\mathrm{NPh})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}{ }_{2}-2,6\right)(\mathrm{py})_{2}\right] 6$ were grown from a benzene-hexane solution at room temperature. The molecular structure is shown in Fig. 2. Selected bond lengths and angles are in Tables 1 and 2. The tungsten atom adopts a distorted-octahedral configuration with a trans arrangement of the arylimide and aryloxide ligands. A trans arrangement is also found for the two chlorine atoms and two pyridine ligands.

The short $\mathrm{W}-\mathrm{N}$ (1) distance $[1.75(1) \AA$ ] and the almost linear $\mathrm{W}-\mathrm{N}(1)-\mathrm{C}(11)$ angle [175.7(9) ${ }^{\circ}$ ] clearly indicate that the organoimido group functions as a four-electron donor. ${ }^{19}$ The W -O distance of the aryloxide moiety is 1.969 (8) $\AA$, which is in the middle of the range for other known aryloxide W -0 distances, e.g. 2.129(8) $\AA$ in $\left[\mathrm{WH}_{3}(\mathrm{OPh})\left(\mathrm{PM} \mathrm{e}_{3}\right)_{4}\right]^{20} 1.966(4)$ $\AA$ in $\left[\mathrm{WCl}_{2}(\mathrm{OR})_{2}\left(\mathrm{PM} \mathrm{e} \mathrm{e}_{2} \mathrm{Ph}\right)_{2}\right]\left(\mathrm{R}=2,6-\mathrm{Ph}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)^{21} 1.849(5)-$ $1.866(5) \AA$ in $\left[\mathrm{W}_{\left.\left(0 \mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}{ }_{2}-2,6\right)_{4}\right]^{22} \text { and } 1.853(4) \text { and } 1.877(4)}\right.$ $\AA$ in $\left[\mathrm{WCl}_{3}(\mathrm{OR})_{2}\left(\mathrm{PM} \mathrm{e} \mathrm{e}_{2} \mathrm{Ph}\right)\right]^{21}$ The large $\mathrm{W}-\mathrm{O}-\mathrm{C}(1)$ angle of 168.3(7) ${ }^{\circ}$ together with the W - O distance indicate a weak $\pi$ donor character of the aryloxide ligand. Steric interactions between the isopropyl groups of the aryloxide and the equatorial ligands ( $\mathrm{py}, \mathrm{Cl}$ ) have also to be taken into consideration for the W-O-C (1) angle enlargement.

Owing to poor crystal quality the data set for the structure determination of $\left[\mathrm{WCl}_{2}(\mathrm{~N} \mathrm{Ph})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pri}_{2}-2,6\right)\left(\mathrm{PEt}_{3}\right)_{2}\right] 7$ did not allow an anisotropic refinement of all non-hydrogen atoms. Therefore the bond lengths and angles will not be discussed. However the trans arrangement of the arylimide and aryloxide ligands at the octahedrally co-ordinated tungsten centre was unambiguously demonstrated. The cis arrangement in $d^{0}$ and the trans arrangement in $\mathrm{d}^{\mathrm{n}}$ transition-metal complexes ( $\mathrm{n}=1$ or 2) of two $\pi$-donor ligands has been observed in several examples (Table 3).

Our structural studies of compounds 4 and 6 together with the direct transformation of the diamagnetic adduct 4 to the paramagnetic product 6 (Scheme 3) by reduction clearly shows that the reorganization of the ligands depends on the electron configuration at the transition-metal centre. Wigley ${ }^{8}$ found another example for this dependence during his studies of the chemistry of tantalum(v) phenylimidoaryloxides (Scheme 3). Thereduction of the tantalum(v) complex $\left[\mathrm{TaCl}_{2}\left(\mathrm{NR}^{\prime}\right)\left(\mathrm{OC}_{6} \mathrm{H}_{3}{ }^{-}\right.\right.$ $\left.\left.\mathrm{Pr}^{\mathrm{i}}-2,6\right)(\mathrm{py})_{2}\right]\left(\mathrm{R}^{\prime}=2,6-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ with cis arrangement of the $\pi$-donor ligands ( $N R^{\prime}$ and $\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}$ ) leads to a reorganized


Scheme 3 R $=R^{\prime}=2,6-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
reduction product with a trans arrangement of the respective $\pi$-donor ligands.
These preparative and structural results are consistent with the theoretical studies of M ingos and co-workers ${ }^{1,2}$ on the $\mathrm{M}_{2}$ moiety. In octahedrally co-ordinated $\mathrm{d}^{0}$ complexes a cis arrangement of the $\pi$-donor ligands is preferred because all three $d_{\pi}$ orbitals are allowed to accept $\pi$ donation from these ligands. A trans configuration is favoured by the $\pi$-donor ligands in complexes with $d^{1}$ and $d^{2}$ electron configuration because the valence electrons can reside in the lone $d_{\pi}$ orbital which is not destabilized by $\pi$ donation.

## Spectroscopy

The ${ }^{1}$ H NM R spectra of complexes $\mathbf{4}$ and $\mathbf{5}$ show a significant low-field shift of $\delta 9.46$ and 9.16 for the $\mathrm{H}_{\omega}$ protons of the coordinated pyridine. Three bands are observed in the IR spectra for the W-CI stretches which is characteristic for a meridional arrangement of the chlorine substituents. ${ }^{15 a}$ In the case of the reduction products 6 and 7 only one $\mathrm{W}-\mathrm{Cl}$ stretch at 297 and $282 \mathrm{~cm}^{-1}$ can be observed, which is consistent with the trans arrangement of the chloride ligands. ${ }^{25}$
The magnetic susceptibility of complex 6 was measured over a temperature range ( $2-300 \mathrm{~K}$ ) and the Curie-Weiss relation was obeyed within a small value of $\theta(5 \mathrm{~K})$. The magnetic moment of $1.58 \mu_{\mathbf{B}}$ (room temperature) is appreciable less than the spin-only value. A pparently spin-orbit coupling is responsible for the low magnetic moment. ${ }^{26}$

Cyclic voltammograms of complexes 6 and 7 were recorded in thf. The voltammogram of ferrocene was used for calibration purposes. Both complexes show a quasi-reversible one electron reduction ( $6, \mathrm{E}_{\frac{1}{2}}=-1.68 \mathrm{~V} ; 7, \mathrm{E}_{\frac{1}{2}}=-1.64 \mathrm{~V}$, vs. ferrocene-ferrocenium) $\mathbb{I}$ which can be assigned to the couple $W^{\mathrm{v}}-\mathrm{W}^{\mathrm{IV}}$.
The new compounds 6 and $\mathbf{7}$ were also characterized by their X -band EPR spectra. The fluid solution spectrum of $6[\mathrm{Fig}$. 3(a)] shows an intense peak centred at $\mathrm{g}=1.86$ along with two satellite peaks characteristic of the coupling of a single unpaired electron with the ${ }^{183} \mathrm{~W}$ nucleus ( $I=\frac{1}{2}$, natural abundance $=14.4 \%, \mathrm{~A}=60 \times 10^{-4} \mathrm{~cm}^{-1}$ ). In the frozen-solution spectrum of 6 [Fig. 3(b)] three different $g$ values were expected due to the $\mathrm{C}_{2 v}$ symmetry. The spectrum shows only two signals; obviously two $g$ values are not resolvable ( $g_{1}, g_{2}=1.88$, $g_{3}=1.80$ ). A gain the hyperfine splitting for the ${ }^{183} \mathrm{~W}$ isotope can be observed as satellites around the main peak. The fluidsolution EPR spectrum of 7 [Fig. 3(c)] exhibits a triplet centred at $\mathrm{g}=1.89$, with hyperfine coupling to two equivalent ${ }^{31} \mathrm{P}$ nuclei

IT The reference electrode was a saturated calomel electrode (SCE). A platinum-inlay electrode was used as the working electrode and the counter electrode was also platinum. Test solutions contained $1 \times 10^{-3}$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$ analyte and $0.1 \mathrm{~mol} \mathrm{dm}^{-3}\left[\mathrm{NBu}^{\mathrm{n}}\right]\left[\mathrm{PF}_{6}\right]$ supporting electrolyte. The $E_{\frac{1}{2}}$ values are reported vs. ferrocene-ferrocenium as internal standard.

Table 3 Examples of the relative orientation of two $\pi$-donor ligands in octahedral complexes

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| Electron <br> configuration | Orientation | Ref. |
| :--- | :--- | :--- |
| $d^{0}$ | cis | This work |
| $d^{0}$ | cis | 3 |
| $d^{0}$ | cis | 5 |
| $d^{0}$ | cis | 6 |
| $d^{1}$ | trans | This work |
| $d^{1}$ | trans | This work |
| $d^{1}$ | trans | 21 |
| $d^{2}$ | trans | 3 |
| $d^{2}$ | trans | 23 |
| $d^{2}$ | trans | 24 |
| $d^{2}$ | trans | 4 |

bipy $=2,2^{\prime}$ - Bipyridine.


Fig. 3 The EPR spectra (X-band) of (a) complex 6 in toluene at room temperature (first derivative), (b) 6 in toluene at 136 K (first derivative) and (c) 7 in toluene at room temperature
( $\mathrm{A}=28 \times 10^{-4} \mathrm{~cm}^{-1}$ ) which is in the range found for other complexes. ${ }^{27}$

## Experimental

## M aterials

2,6-D iisopropylphenol, bpy and py wereobtained from A Idrich. Triethylphosphine ${ }^{28}$ and $\left[\left\{\mathrm{WCl}_{3}(\mathrm{NPh})\right\}_{2}(\mu-\mathrm{Cl})_{2}\right]^{15 b}$ were prepared according to literature procedures. Hexane was distilled from potassium, benzene and thf from sodium-benzophenone and toluene from sodium. All distillations and bench-top manipulations were carried out under nitrogen.

## Physical measurements

Infrared spectra were recorded on a Perkin-EImer FT-IR 1720 X spectrometer, N M R spectra with Bruker W P 80 PFT ( ${ }^{1} \mathrm{H}, 80$ M Hz ), WH-250 PF T ( ${ }^{1} \mathrm{H}, 250$; ${ }^{13} \mathrm{C}, 62.9 \mathrm{M} \mathrm{Hz}$ ) and Varian VXR $300\left({ }^{1} \mathrm{H}, 300 ;{ }^{13} \mathrm{C}, 75.4 \mathrm{M} \mathrm{Hz}\right)$ spectrometers. Cyclic voltammetry was performed using an EG\&G 173 potentiostat and a 175 programmer with a normal three-electrode configuration. The EPR spectra were obtained with a Bruker ER 200D/ESP 3220 spectrometer. Samples were prepared as $\approx 1 \mathrm{mmol} \mathrm{dm}^{-3}$ solutions in toluene (using diphenylpicrylhydrazyl for calibration). A gaseous nitrogen cryostat was used for low-temperature (136 K ) studies. M agnetic measurements on a polycrystalline sample were carried out with a SQUID magnetometer (Quantum design). Liquid secondary ion mass spectra were obtained with a Finnigan M AT 95 instrument. Elemental analyses were performed by Mikroanalytisches Labor Pascher (D 53424 Remagen) and for complexes 2, $\mathbf{3}$ and $\mathbf{5}$ with a Carlo-Erba Elemental A nalyzer.

## Syntheses

[W $\left.(\mathrm{NPh})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathbf{j}}-\mathbf{2 , 6}\right)_{4}\right]$ 1. A hexane suspension of $\left[\left\{\mathrm{WCl}_{3}(\mathrm{NPh})\right\}_{2}(\mu-\mathrm{Cl})_{2}\right](9.06 \mathrm{~g}, 10.9 \mathrm{mmol})$ was cooled to $0^{\circ} \mathrm{C}$
and treated with a mixture of diethylamine ( $6.36 \mathrm{~g}, 87 \mathrm{mmol}$ ) and 2,6-diisopropylphenol ( $15.5 \mathrm{~g}, 87.0 \mathrm{mmol}$ ). The reaction mixture was stirred for 15 h at room temperature. Diethylamine hydrochloride was separated by filtration, the hexane solution was concentrated in vacuo (removal of hexane in vacuo results in a highly viscous red oil, $\geqslant 95 \%$ pure according to ${ }^{1}$ H NMR spectroscopy) and cooled to $-30^{\circ} \mathrm{C}$ to give red crystals which were filtered off ( $5.95 \mathrm{~g}, 28 \%$ ). N M R ( $\mathrm{CDCl}_{3}$ ): ${ }^{\mathrm{H}} \mathrm{H}(300 \mathrm{M} \mathrm{Hz}), \delta$ 7.47 (m, $2 \mathrm{H}, \mathrm{NPh}$ ), 7.12-7.02 (m, $3 \mathrm{H}, \mathrm{NPh}$ ), 7.01 [d, 8 H , ${ }^{3} \mathrm{j}(\mathrm{HH})=7.4, \mathrm{H}^{3,5}$ of aryloxide], 6.85 [dd, $4 \mathrm{H},{ }^{3} \mathrm{~J}(\mathrm{HH})=7.1$, $8.1, \mathrm{H}^{4}$ of aryloxide], 3.52 [spt, $8 \mathrm{H},{ }^{3}$ ] $(\mathrm{HH})=6.7, \mathrm{CHCH}_{3}$ ] and $0.92\left[\mathrm{~d}, 48 \mathrm{H},{ }^{3} \mathrm{~J}(\mathrm{HH})=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(75.4 \mathrm{M} \mathrm{Hz})$, $\delta 159.1$ ( $\mathrm{C}_{\text {ipso }}$ of aryloxide), 153.5 ( $\mathrm{C}_{\text {ipso }}$ of NPh ), 138.1 ( $\mathrm{C}^{2,6}$ of aryloxide), 127.7, 127.6, 127.0, 123.3, 123.1 ( NPh , aryloxide), $26.5\left(\mathrm{CHCH}_{3}\right)$ and $23.9\left(\mathrm{CHCH}_{3}\right)$. M ass spectrum (SIM S): $\mathrm{m} / \mathrm{z}$ $806\left[\mathrm{M}^{+}-\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}{ }_{2}\right]$ (Found: C, 65.8; H, 7.75. Calc. for $\left.\mathrm{C}_{54} \mathrm{H}_{73} \mathrm{NO}_{4} \mathrm{~W}: \mathrm{C}, 65.9 ; \mathrm{H}, 7.5 \%\right)$.
[ $\left.\mathrm{WCl}_{3}(\mathrm{NPh})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}-2,6\right)\right]$ 2. The red viscous oil of complex $\mathbf{1}(21.4 \mathrm{~g}, 21.7 \mathrm{mmol})$ (not crystallized from hexane for this preparation) was dissolved in toluene and treated with $\left[\left\{\mathrm{WCl}_{3}(\mathrm{NPh})\right\}_{2}(\mu-\mathrm{Cl})_{2}\right](27.2 \mathrm{~g}, 32.6 \mathrm{mmol})$ at room temperature. The mixture was stirred overnight, concentrated in vacuo, cooled to $-30^{\circ} \mathrm{C}$ and the brown microcrystals filtered off (41.3 $\mathrm{g}, 85 \%)$. N M R: ${ }^{1} \mathrm{H}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $87.9-7.1$ ( $\mathrm{m}, 8 \mathrm{H}, \mathrm{NPh}$, aryloxide), 3.45 [spt, $2 \mathrm{H},{ }^{3}$ ] $(\mathrm{HH})=6.8, \mathrm{CHCH}_{3}$ ] and 1.29 [d, $12 \mathrm{H},{ }^{3} \mathrm{~J}(\mathrm{HH})=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}$ ]. M ass spectrum (SIM S): m/z $557\left(\mathrm{M}^{+}\right)$. M olecular weight determination (vapour-pressure osmometry, 32.35 mg in $1.1870 \mathrm{~g} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{M}=555$. Calc. 558.59 (Found: C, 38.45; H, 4.05; N, 2.5. Calc. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{~N}$ OW: C, 38.7; $\left.\mathrm{H}, 3.95 ; \mathrm{N}, 2.5 \%\right)$.
[ $\mathrm{WCl}_{3}(\mathrm{~N} \mathrm{Ph})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}-\mathbf{2}, 6\right)$ (thf)] 3. A solution of complex $\mathbf{2}$ ( $0.5 \mathrm{~g}, 0.4 \mathrm{mmol}$ ) in thf ( $10 \mathrm{~cm}^{3}$ ) was stirred overnight at room temperature. The solvent was removed in vacuo. Slow diffusion from hexane into a diethyl ether solution of $\mathbf{2}$ gave the product as a dark red microcrystalline powder ( $0.5 \mathrm{~g}, 96 \%$ ). NMR ( $\mathrm{CDCl}_{3}$ ): ${ }^{1} \mathrm{H}(80 \mathrm{M} \mathrm{Hz}), \delta 7.6-6.8(\mathrm{~m}, 8 \mathrm{H}$, aryloxide, NPh ), $4.5-$ 4.0 (br s, $4 \mathrm{H}, \mathrm{H}_{a}$ of thf), $3.84\left[\mathrm{spt}, 2 \mathrm{H},{ }^{3}\right.$ ] $(\mathrm{HH})=6.8, \mathrm{CHCH}_{3}$ ], 2.2-1.8 ( $\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{\beta}$ of thf) and $1.23\left[\mathrm{~d}, 12 \mathrm{H},{ }^{3} \mathrm{~J}(\mathrm{HH})=6.8 \mathrm{~Hz}\right.$, $\left.\mathrm{CHCH}_{3}\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(62.9 \mathrm{M} \mathrm{Hz}), \delta 160.0$ ( $\mathrm{C}_{\text {ipso }}$ of aryloxide), 151.0 ( $\mathrm{C}_{\text {ipso }}$ of N Ph), 138.3 ( $\mathrm{C}^{2,6}$ of aryloxide), 131.9, 129.6, 127.4, 126.2, 123.7 ( N Ph, aryloxide), 70.0 (br, $\mathrm{C}_{\alpha}$ of thf), 26.1 $\left(\mathrm{CHCH}_{3}\right), 25.6\left(\mathrm{C}_{\beta}\right.$ of thf) and $24.5\left(\mathrm{CHCH}_{3}\right)$ (Found: $\mathrm{C}, 41.2$; $\mathrm{H}, 4.85 ; \mathrm{N}, 2.25$. C alc. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{Cl}_{3} \mathrm{NO}_{2} \mathrm{~W}: \mathrm{C}, 41.9 ; \mathrm{H}, 4.8 ; \mathrm{N}$, 2.2\%).
$\left[\mathrm{WCl}_{3}\left(\mathrm{NPh}^{2}\right)\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}-\mathbf{2}, 6\right)(\mathrm{py})\right]$ 4. A solution of complex $\mathbf{2}$ ( $1.45 \mathrm{~g}, 1.3 \mathrm{mmol}$ ) in thf $\left(10 \mathrm{~cm}^{3}\right)$ was treated with pyridine ( $0.21 \mathrm{~cm}^{3}, 2.6 \mathrm{mmol}$ ) and stirred for 30 min at room temperature The solvent was removed in vacuo. Recrystallization from benzene-hexane-diethyl ether ( $1: 2: 2$ ) gave the complex as dark brown crystals ( $1.27 \mathrm{~g}, 77 \%$ ). IR : $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ (C sl) 337,322 and

Table 4 Crystallographic data for complexes 4 and 6*

|  | 4 | 6 |
| :---: | :---: | :---: |
| Formula | $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{OW}$ | $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OW}$ |
| M | 637.69 | 681.34 |
| Crystal size/mm | $0.20 \times 0.20 \times 0.20$ | $0.25 \times 0.20 \times 0.15$ |
| a/Å | 15.483(8) | 9.815(2) |
| b/Å | 17.886(8) | 15.965(3) |
| c/Å | 18.315(9) | 11.7752(5) |
| $\beta{ }^{\circ}$ | 93.42(5) | 92.09(2) |
| $\mathrm{U} / \AA^{3}$ | 5063(8) | 2780(2) |
| D $\mathrm{c}^{\text {c cm }}{ }^{-3}$ | 1.673 | 1.628 |
| Z | 8 | 4 |
| $\mu\left(\mathrm{M} \mathrm{o-K} \alpha\right.$ )/cm ${ }^{-1}$ | 50.0 | 44.6 |
| T/K | 203 | 253 |
| Scan mode | $\omega-2 \theta$ | $\omega$ |
| Scan range/ ${ }^{\circ}$ | $3<\theta<25$ | $3<\theta<28$ |
| Total data | 9579 | 5278 |
| No. unique observed data |  |  |
| [ 1 > 1.0\%( I$)$ ] | 4386 | 2709 |
| No. variables | 523 | 316 |
| R, R' | 0.084, 0.062 | 0.046, 0.048 |
| Goodness of fit | 1.189 | 1.113 |
| M aximum residual density/e $\AA^{-3}$ | 2.01 [1.02 $\AA$ from W (1a)] | 0.96 (0.96 $\AA$ from W ) |

* D etails in common: monoclinic, space group $\mathrm{P}_{2} / \mathrm{c}$; weighting scheme $\mathrm{w}=1 / \sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}\right)$.

288 (WCI). NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}$ ): ${ }^{1} \mathrm{H}(250 \mathrm{MHz}), \delta 9.46$ [dd, 2 H , ${ }^{3} \mathrm{~J}(\mathrm{HH})=6.5,{ }^{4} \mathrm{~J}(\mathrm{HH})=1.5, \mathrm{H}_{\alpha}$ of py], 7.15-6.35 (m, 11 H , aryloxide, $\mathrm{NPh}, \mathrm{py}), 3.72\left[\mathrm{spt}, 2 \mathrm{H},{ }^{3} \mathrm{~J}(\mathrm{HH})=6.8, \mathrm{CHCH}_{3}\right.$ ] and 1.03 $\left[\mathrm{d}, 12 \mathrm{H},{ }^{3} \mathrm{~J}(\mathrm{HH})=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(62.9 \mathrm{M} \mathrm{Hz}), \delta$ 159.8 ( $\mathrm{C}_{\text {ipso }}$ of aryloxide), 151.5 ( $\mathrm{C}_{\alpha}$ of py), 150.9 ( $\mathrm{C}_{\text {ipso }}$ of NPh ), 139.2 ( $\mathrm{C}^{2,6}$ of aryloxide), 138.8 ( $\mathrm{C}_{\text {a }}$ of py), 131.6, $130.0,128.5$, 126.5, 124.4, 124.3 ( NPh , aryloxide, $\mathrm{C}_{\gamma}$ of py), $26.3\left(\mathrm{CHCH}_{3}\right.$ ) and $24.7\left(\mathrm{CHCH}_{3}\right)$ (Found: $\mathrm{C}, 43.95 ; \mathrm{H}, 4.45$. Calc. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{OW}: \mathrm{C}, 43.3 ; \mathrm{H}, 4.25 \%$ ).
[ $\mathrm{WCl}_{3}(\mathbf{N P h})\left(\mathbf{O C}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}-\mathbf{2}, \mathbf{6}\right)($ bpy $\left.)\right]$ 5. This complex was prepared in the same manner as for $\mathbf{4}$ using $2(1.30 \mathrm{~g}, 2.3 \mathrm{mmol})$ Y ield $1.31 \mathrm{~g}(81 \%)$. IR : $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ (Csl) 339, 325 and 288 (WCI). NMR ( $\mathrm{CDCl}_{3}$ ): ${ }^{1 \mathrm{H}}(250 \mathrm{MHz}), \delta 9.16\left[\mathrm{dd}, 2 \mathrm{H},{ }^{3} \mathrm{~J}(\mathrm{HH})=5.4\right.$, ${ }^{4} \mathrm{~J}(\mathrm{HH})=1.3, \mathrm{H}_{\alpha}$ of bpy], 7.5-6.9 (m, 10 H , aryloxide, NPh, bpy), $3.27\left[\mathrm{spt}, 2 \mathrm{H}, 3 \mathrm{~J}(\mathrm{HH})=6.8, \mathrm{CHCH}_{3}\right], 1.26\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CCH}_{3}\right)$ and $0.85\left[\mathrm{~d}, 12 \mathrm{H},{ }^{3} \mathrm{~J}(\mathrm{HH})=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(62.9$ M Hz ), $\delta$ 164.3, 159.4, 150.5 ( $\mathrm{C}_{\text {ipso }}$ of aryloxide, N Ph, bpy), 151.0 ( $\mathrm{C}_{\alpha}$ of bpy), 138.8 ( $\mathrm{C}^{2,6}$ of aryloxide), 131.8, 130.0, 127.5, 126.2, 123.8, 121.8 (aryloxide, N Ph, $\mathrm{C}_{\beta}$ of bpy), $35.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.3$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ ], $26.0\left(\mathrm{CHCH}_{3}\right)$ and $24.5\left(\mathrm{CHCH}_{3}\right)$ (Found: $\mathrm{C}, 46.2$; $\mathrm{H}, 5.4, \mathrm{~N}, 3.95$. Calc. for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{Cl}_{3} \mathrm{~N}{ }_{2} \mathrm{OW}: \mathrm{C}, 46.75 ; \mathrm{H}, 5.1$; N , 4.05\%).
[ $\left.\mathrm{WCl}_{2}(\mathrm{NPh})\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}-\mathbf{2}, 6\right)(\mathrm{py})_{2}\right]$ 6. A solution of complex $\mathbf{2}$ $(6.49 \mathrm{~g}, 5.81 \mathrm{mmol})$ in thf $\left(10 \mathrm{~cm}^{3}\right)$ and toluene ( $30 \mathrm{~cm}^{3}$ ) was cooled to $0^{\circ} \mathrm{C}$ and treated with pyridine ( $1.84 \mathrm{~g}, 2.23 \mathrm{mmol}$ ). A fter 5 min sodium amalgam ( $\mathrm{Na}, 267 \mathrm{mg}, 11.6 \mathrm{mmol} ; \mathrm{Hg}, 52$ g) was added. The mixture was stirred vigorously overnight at room temperature, filtered and the solvent removed in vacuo Recrystallization from benzene-hexane gave the complex as dark green crystals ( $6.1 \mathrm{~g}, 77 \%$ ). IR : $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ (Csl) 297 (WCI) M ass spectrum (SIM S): m/z 683 (M ${ }^{+}$), 646 ( $\mathrm{M}^{+}-\mathrm{Cl}$ ), 604 $\left(\mathrm{M}^{+}-\mathrm{py}\right)$ and $505\left(\mathrm{M}^{+}-\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}{ }_{2}\right)$ (Found: C, 49.35; H 4.75. Calc. for $\left.\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OW}: \mathrm{C}, 49.35 ; \mathrm{H}, 4.75 \%\right)$.
[ $\left.\mathrm{WCl}_{2}\left(\mathrm{NPh}^{2}\right)\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}-\mathbf{2}, 6\right)_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ 7. To a solution of complex $2\left(3.12 \mathrm{~g}, 2.79 \mathrm{mmol}\right.$ ) in thf ( $10 \mathrm{~cm}^{3}$ ) and toluene ( 30 $\mathrm{cm}^{3}$ ) was added sodium amalgam ( $\mathrm{Na}, 129 \mathrm{mg}, 5.6 \mathrm{mmol} ; \mathrm{Hg}$, 25 g ) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h at room temperature and triethylphosphine ( $1.33 \mathrm{~g}, 11.21 \mathrm{mmol}$ ) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred vigorously overnight at room temperature, filtered and the solvent removed in vacuo Recrystallization of the product from toluene gave the complex as red crystals ( $2.63 \mathrm{~g}, 62 \%$ ). IR : $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ (CsI) 282 (WCI),
$M$ ass spectrum (SIM S): m/z $758\left(\mathrm{M}^{+}\right), 724\left(\mathrm{M}^{+}-\mathrm{CI}\right), 642$ $\left(\mathrm{M}^{+}-\mathrm{PEt}_{3}\right)$ and $583\left(\mathrm{M}^{+}-\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}\right)$ (Found: C, 47.6; H, 6.9. Calc. for $\left.\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{Cl}_{2} \mathrm{~N} \mathrm{OP} 2 \mathrm{~W}: \mathrm{C}, 47.45 ; \mathrm{H}, 6.9 \%\right)$.

## C rystallography

Crystals of complexes 4 and 6 were mounted on a glass fibre under a stream of nitrogen. Geometry and intensity data were collected on an Enraf-Nonius CAD4 diffractometer with graphite-monochromatized M o-K $\alpha$ radiation ( $\lambda=0.71073 \AA$ ). Crystal data and the parameters of data collection and structure refinement ${ }^{29}$ are compiled in Table 4. Structure 4 was solved by direct methods ${ }^{30}$ and 6 by the Patterson method. The remaining atom positions resulted from subsequent refinement cycles and Fourier-difference syntheses. In the final leastsquares full-matrix refinement (based on F) all non-hydrogen atoms were refined with anisotropic thermal displacement parameters except for the disordered parts of structure $\mathbf{4}$ which were refined isotropically. All hydrogen atoms of both structures were treated as riding atoms with an idealized geometry ( $\mathrm{C}-\mathrm{H} 0.98 \AA, \mathrm{~B}_{\mathrm{H}}=1.3 \mathrm{~B}_{\mathrm{C}}$ ). For 4 an empirical absorption correction was applied ( $\psi$ scans). ${ }^{31}$
A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. Chem. Soc., D alton Trans., 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/368.

## Acknowledgements

We thank Professor D r. G. E. Herberich for his support.

## References

1 D. M. P. M ingos, J. Organomet. Chem., 1979, 179, C 29.
2 D. C. Brower, J. L. Templeton and D. M. P. M ingos, J. A m. Chem. Soc., 1987, 109, 5203.
3 Y.-W. Chao, P. A. Wexler and D. E. Wigley, Inorg. Chem., 1989, 28, 3860.

4 H. Rothfuss, J. C. H uffman and K . G. Caulton, Inorg. Chem., 1994, 33, 187.
5 M. R. Cook, W. A. Hermann, P. K iprof and J. Takacs, J. Chem. Soc., D alton Trans., 1991, 797.
6 B. R. A shcroft, D. C. Bradley, G. R. Clark, R. J. Errington, A. J. N ielson and C. E. Rickard, J. Chem. Soc., Chem. Commun., 1987, 170.

7 R. C. B. Copley, P. W. Dyer, V. C. Gibson, J. A. K. Howard E. L. M arshall, W. Wang and B. Whittle, Polyhedron, 1996, 15, 3001.

8 D. E. Wigley, P rog. Inorg. Chem., 1994, 42, 239.
9 A. Bell, US Pat., 5194 534, 1993.
10 M . Liang and E. A. M aatta, Inorg. C hem., 1992, 31, 953; W. Clegg, R. J. Errington, D. C. R. Hockless, J. M. K irk and C. Redshaw, Polyhedron, 1992, 11, 381.
11 D. C. Bradley, M . B. H ursthouse, K . M . A . M alik, A. J. N ielson and R. L. Short, J. Chem. Soc., D alton Trans., 1983, 2651.

12 G. R. Clark, A. J. Nielson and C. E. F. Rickard, J. Chem. Soc., D alton Trans., 1995, 1907.
13 G. R. Clark, M. W. Glenny, A . J. N ielson and C. E. F. Rickard, J. Chem. Soc., D alton Trans., 1995, 1147.

14 W. Clegg, J. Errington, P. K raxner and C. Redshaw, J. Chem. Soc. D alton Trans., 1992, 1431.
15 (a) P. A. Bates, A. J. N ielson and J. M. Waters, Polyhedron, 1987, 6, 163; (b) S. F. Pedersen and R . R . Schrock, J. Am. Chem. Soc., 1982, 104, 7483.
16 A . J. N ielson and J. M. Waters, Polyhedron, 1982, 1, 561; A . J. N ielson, J. M . Waters and D. C. Bradley, Polyhedron, 1985, 4, 285; J. L. K erschner, J. S. Yu, P. E. Fanwick and J. P. Rothwell, Organometallics, 1989, 8, 1414; R. R. Schrock, R. T. D ePue, J. Feldman, K. B. Yap, D. C. Yang, W. M . D avis, L. Park, M . DiM are, M . Schofield, J. A nhaus, E. Walborsky, E. Evitt, C. K rüger and P. Betz, Organometallics, 1990, 9, 2262; D. C. Bradley, A. J. H owes, M . B. H ursthouse and J. D. Runnacles, Polyhedron, 1991, 10, 477.
17 E. K eller, SCHAKAL 88, a FORTRAN Program for the Graphic Representation of $M$ olecular and Crystallographic Models, U niversity of F reiburg, 1988.

18 A. L. Spek, A cta C rystallogr., Sect. A , 1990, 46, C 34
19 W. A. Nugent and J. M. M ayer, M etal-Ligand M ultiple Bonds, Wiley, N ew York, 1988.
20 K. W. Chiu, R. A. Jones, G. Wilkinson, A. M. R. Galas, M. B. H usthouse and K. M. A . M alik, J. C hem. Soc., D alton Trans., 1981, 1204.

21 J. L. K erschner, P. E. Fanwick, I. P. Rothwell and J. C. Huffman, I norg. C hem., 1989, 28, 780.
22 M. L. Listemann, R . R . Schrock, J. C. D ewan and R . M . K olodziej, I norg. C hem., 1988, 27, 264.
23 G. V. G oeden and B. L. H aymore, Inorg. Chem., 1983, 22, 157.
24 C. J. L. Lock and G. Turner, C an. J. C hem., 1977, 55, 333.
25 D. C. Bradley, R . J. Errington, M . B. H ursthouse, R . L. Short, B. R . A shcroft, G. R. Clark, A. J. N ielson and C. E. F. Rickard, J. Chem. Soc., D alton Trans., 1987, 2067.
26 E. A. A llen, B. J. Brisdon, D. A. Edwards, G. W. A. Fowles and R. G. Williams, J. Chem. Soc., 1963, 4649.

27 W. Levason, C. A. M cAuliffe and F. P. M cCullough, Inorg. Chem., 1977, 16, 2911.
28 W. Wolfsberger and H. Schmidbaur, Synth. React. Inorg. M etalOrg. Chem., 1974, 4, 149.
29 B. A. Frenz, SD P, Version 5.0, Enraf-N onius, D elft, 1988; M OL EN, An Interactive structure solution procedure, Enraf-N onius, Delft, 1990.

30 G. M. Sheldrick, SHELXS 86, Program for structure solution, U niversity of Göttingen, 1986.
31 A. C. T. N orth, D. C. Phillips and F. S. M athews, A cta C rystallogr., Sect. A, 1968, 24, 351.

Received 27th September 1996; Paper 6/06644E


[^0]:    $\dagger$ E-M ail: lars.wesemann@ac.rwth-aachen.de
    $\ddagger$ Non-SI units employed: $\mu_{\mathrm{B}} \approx 9.27 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1} ; \mathrm{G}=10^{-4} \mathrm{~T}$.

[^1]:    § Proposed monomeric structure of $\mathbf{1}$, in the case of the analogue oxoaryloxide complex [ $\mathrm{WO}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}^{\mathrm{i}}-2,6\right)_{4}$ ] the monomeric squarepyramidal structure has been demonstrated by a crystal structure analysis. ${ }^{14}$

